This commit is contained in:
icecheng 2025-09-07 10:35:24 +08:00
commit 951a7378d2
25 changed files with 1555 additions and 0 deletions

5
.idea/.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/

View File

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

6
.idea/misc.xml Normal file
View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="freeleaps" />
</component>
</project>

8
.idea/modules.xml Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/rabbitmq-test.iml" filepath="$PROJECT_DIR$/.idea/rabbitmq-test.iml" />
</modules>
</component>
</project>

8
.idea/rabbitmq-test.iml Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="freeleaps" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

6
.idea/vcs.xml Normal file
View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

0
comsumer/__init__.py Normal file
View File

View File

@ -0,0 +1,85 @@
import asyncio
import aio_pika
from config import RABBITMQ_URI
async def direct_consumer(queue_name: str, consumer_label: str):
"""
Direct Exchange 消费者监听指定队列处理对应路由键的消息
:param queue_name: 要监听的队列名称与生产者中定义的队列一致
:param consumer_label: 消费者标签用于区分不同类型的消息处理器
"""
# 1. 建立与 RabbitMQ 的连接robust 模式自动重连,提升稳定性)
connection = await aio_pika.connect_robust(RABBITMQ_URI)
# 2. 创建通信信道(所有操作通过信道执行,减少 TCP 连接开销)
channel = await connection.channel()
# 3. 开启公平调度:确保消费者处理完 1 条消息后,再接收下 1 条
# 避免「快消费者空闲、慢消费者堆积」的不均衡问题
await channel.set_qos(prefetch_count=1)
# 4. 声明要监听的队列(与生产者中 queue_bindings 定义的队列完全一致)
# 若队列不存在(未执行 setup_direct_exchange会报错提醒初始化
queue = await channel.declare_queue(
queue_name,
durable=True, # 与生产者一致:队列持久化(重启不丢失)
auto_delete=False # 队列不自动删除(即使无消费者也保留)
)
# 5. 定义消息处理逻辑(核心:根据队列类型处理对应级别消息)
async def on_message_received(message: aio_pika.IncomingMessage):
# async with 上下文:自动完成消息确认(处理完后告知 RabbitMQ 删除消息)
# 若处理过程中崩溃,消息会重新回到队列,避免丢失
async with message.process():
# 解码消息体(生产者用 utf-8 编码,此处对应解码)
message_content = message.body.decode("utf-8")
# 打印关键信息(便于调试和日志跟踪)
print(f"[{consumer_label} 消费者] 收到消息:")
print(f" 队列名称:{queue_name}")
print(f" 消息内容:{message_content}")
print(f" 消息路由键:{message.routing_key}") # 验证路由键是否匹配
print(f" 处理时间:{asyncio.get_running_loop().time():.2f}s\n")
# 模拟不同级别消息的处理耗时(业务场景可替换为实际逻辑)
if "error" in queue_name:
# 错误消息:可能需要重试、告警,耗时更长
await asyncio.sleep(2)
elif "warning" in queue_name:
# 警告消息:可能需要记录日志、轻量处理
await asyncio.sleep(1)
elif "info" in queue_name:
# 信息/调试消息:快速处理,仅记录
await asyncio.sleep(0.5)
# 6. 启动队列监听:将消息处理函数绑定到队列
await queue.consume(on_message_received)
# 打印启动日志,提示用户消费者已就绪
print(f"[{consumer_label} 消费者] 已启动,正在监听队列:{queue_name}\n")
# 7. 保持消费者运行(无限期阻塞,直到手动停止程序)
# 若不阻塞,协程会立即结束,消费者会断开连接
await asyncio.Future()
async def start_all_direct_consumers(queue_prefix="demo.direct.queue-"):
"""
启动所有 Direct Exchange 对应的消费者
与生产者 setup_direct_exchange 中的 queue_bindings 完全对应
"""
# 定义要启动的消费者列表(队列名称 + 消费者标签)
consumers = [
# 错误队列:处理路由键为 "error" 的消息
direct_consumer(f"{queue_prefix}error", "错误级别"),
# 警告队列:处理路由键为 "warning" 的消息
direct_consumer(f"{queue_prefix}warning", "警告级别"),
# 信息队列:处理路由键为 "info" 和 "debug" 的消息
direct_consumer(f"{queue_prefix}info", "信息/调试级别")
]
# 同时启动所有消费者(并发运行,互不阻塞)
await asyncio.gather(*consumers)
if __name__ == "__main__":
# 启动所有消费者(需先执行 setup_direct_exchange 初始化队列)
asyncio.run(start_all_direct_consumers())

View File

@ -0,0 +1,66 @@
import asyncio
import aio_pika
from config import RABBITMQ_URI
async def queue_consumer(queue_name: str, consumer_id: int):
"""
单个队列的消费者
:param queue_name: 要监听的队列名称
:param consumer_id: 消费者ID用于区分不同实例
"""
# 建立连接
connection = await aio_pika.connect_robust(RABBITMQ_URI)
channel = await connection.channel()
# 开启公平调度,确保消息均匀分配
# 消费者处理完一条消息后才会接收下一条
await channel.set_qos(prefetch_count=1)
# 声明要监听的队列(与生产者中创建的队列对应)
queue = await channel.declare_queue(
queue_name,
durable=True,
auto_delete=False
)
# 消息处理函数
async def on_message(message: aio_pika.IncomingMessage):
# 自动确认消息(处理完成后从队列中删除)
async with message.process():
content = message.body.decode("utf-8")
print(f"【消费者{consumer_id}】处理消息:{content}")
print(f"【消费者{consumer_id}】来自队列:{queue_name}")
print(f"【消费者{consumer_id}】路由键:{message.routing_key}\n")
# 模拟业务处理耗时(根据实际场景调整)
await asyncio.sleep(1)
# 开始消费队列消息
await queue.consume(on_message)
print(f"【消费者{consumer_id}】已启动,正在监听队列:{queue_name}")
# 保持消费者运行(无限期阻塞)
await asyncio.Future()
async def start_balanced_consumers(
queue_prefix="task.queue.",
queue_count=3
):
"""启动多个消费者,每个消费者对应一个队列"""
# 创建消费者任务列表
consumer_tasks = []
for i in range(queue_count):
queue_name = f"{queue_prefix}{i + 1}"
# 每个队列对应一个独立的消费者
task = asyncio.create_task(queue_consumer(queue_name, i + 1))
consumer_tasks.append(task)
# 同时运行所有消费者
await asyncio.gather(*consumer_tasks)
if __name__ == "__main__":
# 启动3个消费者分别对应3个队列
asyncio.run(start_balanced_consumers(queue_count=3))

View File

@ -0,0 +1,77 @@
import asyncio
import aio_pika
from config import RABBITMQ_URI
async def fanout_consumer(queue_name: str, consumer_id: int):
"""
Fanout Exchange 消费者监听单个队列接收 Fanout 广播的消息
:param queue_name: 要监听的队列名称与生产者 setup 中创建的队列一致
:param consumer_id: 消费者标识区分不同队列的消费者
"""
# 1. 建立稳健连接(自动重连机制,应对网络波动或 RabbitMQ 重启)
connection = await aio_pika.connect_robust(RABBITMQ_URI)
# 2. 创建通信信道(所有消息操作通过信道执行,减少 TCP 连接开销)
channel = await connection.channel()
# 3. 开启公平调度:确保消费者处理完 1 条消息后再接收下 1 条
# 避免单队列内消息堆积(尤其 Fanout 场景下多队列并行处理需均衡)
await channel.set_qos(prefetch_count=1)
# 4. 声明要监听的队列(与生产者 setup_fanout_exchange 中创建的队列完全一致)
# 若队列未初始化(未执行 setup会报错提醒先完成交换器和队列创建
queue = await channel.declare_queue(
queue_name,
durable=True, # 与生产者一致:队列持久化(重启不丢失)
auto_delete=False # 队列不自动删除(即使无消费者也保留,确保广播消息不丢失)
)
# 5. 定义消息处理逻辑Fanout 场景下,同一消息会被所有队列的消费者接收)
async def on_message_received(message: aio_pika.IncomingMessage):
# async with 上下文:自动确认消息(处理完成后告知 RabbitMQ 删除,避免重复消费)
# 若处理崩溃,消息会重新入队,等待消费者重启后重试
async with message.process():
# 解码消息体(生产者用 utf-8 编码,此处对应解码)
message_content = message.body.decode("utf-8")
# 打印关键信息(清晰展示 Fanout 广播特性:同一消息多队列接收)
print(f"【Fanout 消费者{consumer_id}】收到广播消息:")
print(f" 监听队列:{queue_name}")
print(f" 消息内容:{message_content}")
print(f" 消息持久化状态:{'' if message.delivery_mode == 2 else ''}") # 验证持久化
# print(f" 处理时间:{asyncio.get_running_loop().time():.2f}s\n")
# 模拟业务处理耗时(根据实际场景替换,如日志存储、通知推送等)
await asyncio.sleep(1)
# 6. 启动队列监听:将处理逻辑绑定到队列,持续接收广播消息
await queue.consume(on_message_received)
# 打印启动日志,提示用户消费者就绪
print(f"【Fanout 消费者{consumer_id}】已启动,正在监听队列:{queue_name}\n")
# 7. 保持消费者运行(无限期阻塞,直到手动停止程序)
# 若不阻塞,协程会立即结束,消费者连接会断开
await asyncio.Future()
async def start_all_fanout_consumers(queue_prefix="demo.fanout.queue-", queue_count=3):
"""
启动所有 Fanout 消费者与生产者 setup 中创建的 3 个队列一一对应
:param queue_prefix: 队列名称前缀与生产者 queue_name_prefix 一致
:param queue_count: 队列数量与生产者中 range(3) 对应默认 3
"""
# 构建消费者任务列表:为每个队列创建一个独立消费者
consumer_tasks = [
fanout_consumer(
queue_name=f"{queue_prefix}{i}", # 队列名demo.fanout.queue-0/1/2与生产者一致
consumer_id=i + 1 # 消费者标识1/2/3
)
for i in range(queue_count)
]
# 并发启动所有消费者3 个消费者同时运行,互不阻塞)
await asyncio.gather(*consumer_tasks)
if __name__ == "__main__":
# 启动所有 Fanout 消费者(需先执行 setup_fanout_exchange 初始化交换器和队列)
asyncio.run(start_all_fanout_consumers())

View File

@ -0,0 +1,62 @@
import asyncio
import aio_pika
from config import RABBITMQ_URI
async def topic_consumer(queue_name: str, consumer_id: str):
"""
监听指定队列的消费者
:param queue_name: 要监听的队列名称
:param consumer_id: 消费者标识用于区分不同消费者
"""
# 建立连接
connection = await aio_pika.connect_robust(RABBITMQ_URI)
channel = await connection.channel()
# 开启公平调度,确保消费者处理完一条消息再接收下一条
await channel.set_qos(prefetch_count=1)
# 声明要监听的队列(与生产者中创建的队列保持一致)
queue = await channel.declare_queue(
queue_name,
durable=True,
auto_delete=False
)
# 消息处理函数
async def on_message(message: aio_pika.IncomingMessage):
# 自动确认消息(处理完成后从队列中删除)
async with message.process():
message_content = message.body.decode("utf-8")
print(f"【消费者{consumer_id}】收到消息: {message_content}")
print(f"【消费者{consumer_id}】消息路由键: {message.routing_key}")
print(f"【消费者{consumer_id}】来自队列: {queue_name}\n")
# 模拟消息处理耗时(根据实际业务逻辑调整)
await asyncio.sleep(1)
# 开始消费队列中的消息
await queue.consume(on_message)
print(f"【消费者{consumer_id}】已启动,正在监听队列: {queue_name}")
# 保持消费者运行(无限期阻塞)
await asyncio.Future()
async def start_all_topic_consumers(queue_prefix="demo.topic.queue-"):
"""启动所有Topic Exchange对应的消费者"""
# 与setup_topic_exchange中的队列名称对应
consumer_tasks = [
topic_consumer(f"{queue_prefix}critical", "CriticalHandler"),
topic_consumer(f"{queue_prefix}order", "OrderHandler"),
topic_consumer(f"{queue_prefix}user.login", "UserLoginHandler")
]
# 同时启动所有消费者
await asyncio.gather(*consumer_tasks)
if __name__ == "__main__":
# 启动消费者
asyncio.run(start_all_topic_consumers())

1
config.py Normal file
View File

@ -0,0 +1 @@
RABBITMQ_URI = "amqp://guest:guest@localhost:5673/"

0
product/__init__.py Normal file
View File

View File

@ -0,0 +1,74 @@
import aio_pika
from config import RABBITMQ_URI
async def setup_multi_queue_balance(
exchange_name="demo.direct.multi.queue",
queue_prefix="task.queue.",
route_prefix="route.",
queue_count=3 # 3个队列
):
"""创建多个队列,每个队列绑定不同的路由键"""
connection = await aio_pika.connect_robust(RABBITMQ_URI)
channel = await connection.channel()
# 声明Direct交换器
await channel.declare_exchange(
exchange_name,
aio_pika.ExchangeType.DIRECT,
durable=True
)
# 创建N个队列每个队列绑定独立的路由键
for i in range(queue_count):
queue_name = f"{queue_prefix}{i + 1}"
route_key = f"{route_prefix}{i + 1}"
# 声明队列
queue = await channel.declare_queue(
queue_name,
durable=True,
auto_delete=False
)
# 绑定路由键(每个队列对应唯一路由键)
await queue.bind(exchange_name, routing_key=route_key)
print(f"队列 {queue_name} 绑定路由键:{route_key}")
await connection.close()
class BalancedProducer:
def __init__(self, exchange_name="demo.direct.multi.queue", queue_count=3):
self.exchange_name = exchange_name
self.queue_count = queue_count
self.current_index = 0 # 轮询索引
async def connect(self):
"""建立连接(可复用连接提升性能)"""
self.connection = await aio_pika.connect_robust(RABBITMQ_URI)
self.channel = await self.connection.channel()
self.exchange = await self.channel.declare_exchange(
self.exchange_name,
aio_pika.ExchangeType.DIRECT,
durable=True
)
async def publish(self, message: str):
"""轮询选择路由键,发送消息到对应的队列"""
# 轮询算法:每次发送后切换到下一个路由键
self.current_index = (self.current_index + 1) % self.queue_count
route_key = f"route.{self.current_index + 1}" # 对应 route_1/2/3
message_obj = aio_pika.Message(
body=message.encode("utf-8"),
delivery_mode=aio_pika.DeliveryMode.PERSISTENT
)
await self.exchange.publish(message_obj, routing_key=route_key)
print(f"已发送消息:{message}(路由到 {route_key}")
async def close(self):
"""关闭连接"""
await self.connection.close()

73
product/direct_publish.py Normal file
View File

@ -0,0 +1,73 @@
import asyncio
import aio_pika
from config import RABBITMQ_URI
async def setup_direct_exchange(exchange_name="demo.direct", queue_prefix="demo.direct.queue-"):
"""设置Direct类型交换器并绑定队列"""
# 建立连接
connection = await aio_pika.connect_robust(RABBITMQ_URI)
channel = await connection.channel()
# 1. 声明Direct类型交换器
direct_exchange = await channel.declare_exchange(
exchange_name,
aio_pika.ExchangeType.DIRECT,
durable=True # 交换器持久化
)
# 2. 定义队列及对应的绑定键Direct交换器需要精确匹配
# 格式: (队列名称, 绑定键列表)
queue_bindings = [
(f"{queue_prefix}error", ["error"]), # 处理错误级别的消息
(f"{queue_prefix}warning", ["warning"]), # 处理警告级别的消息
(f"{queue_prefix}info", ["info", "debug"]) # 处理信息和调试级别的消息
]
# 3. 循环创建队列并绑定到交换器
for queue_name, binding_keys in queue_bindings:
# 声明队列(持久化)
queue = await channel.declare_queue(
queue_name,
durable=True,
auto_delete=False
)
# 绑定多个路由键到同一个队列
for binding_key in binding_keys:
await queue.bind(
direct_exchange,
routing_key=binding_key # Direct交换器需要指定绑定键
)
print(f"队列 {queue_name} 已绑定路由键: {binding_keys}")
await connection.close()
async def direct_publish(message: str, routing_key: str, exchange_name: str = "demo.direct"):
"""向Direct交换器发送消息"""
# 建立连接
connection = await aio_pika.connect_robust(RABBITMQ_URI)
channel = await connection.channel()
# 声明交换器(确保交换器存在)
exchange = await channel.declare_exchange(
exchange_name,
aio_pika.ExchangeType.DIRECT,
durable=True
)
# 构建消息对象(持久化)
message_obj = aio_pika.Message(
body=message.encode("utf-8"),
delivery_mode=aio_pika.DeliveryMode.PERSISTENT
)
# 发送消息指定路由键Direct交换器会根据路由键匹配队列
await exchange.publish(
message_obj,
routing_key=routing_key # 路由键决定消息流向哪个队列
)
print(f"已发送消息: {message} (路由键: {routing_key})")
await connection.close()

64
product/fanout_publish.py Normal file
View File

@ -0,0 +1,64 @@
import asyncio
import aio_pika
from config import RABBITMQ_URI
async def setup_fanout_exchange(exchange_name="demo.fanout", queue_name_prefix="demo.fanout.queue-"):
# 建立连接
connection = await aio_pika.connect_robust(
RABBITMQ_URI
)
channel = await connection.channel()
# 1. 声明 Fanout 类型交换器,不存在就创建,存在就复用
fanout_exchange = await channel.declare_exchange(
exchange_name,
aio_pika.ExchangeType.FANOUT,
durable=True # 交换器持久化
)
# 2. 定义需要绑定的队列名称列表
queue_names = [queue_name_prefix + str(i) for i in range(3)]
# 3. 循环创建队列并绑定到交换器
for name in queue_names:
# 声明队列(持久化),不存在就创建,存在就复用
queue = await channel.declare_queue(
name,
durable=True,
auto_delete=False
)
# 绑定队列到 Fanout 交换器(忽略路由键)
await queue.bind(fanout_exchange, routing_key="")
async def fanout_publish(message: str = "", exchange_name: str = "demo.fanout"):
# 建立与RabbitMQ的连接
connection = await aio_pika.connect_robust(
RABBITMQ_URI
)
# 创建通道
channel = await connection.channel()
# 声明一个Fanout类型的交换器
fanout_exchange = await channel.declare_exchange(
exchange_name, # 交换器名称
aio_pika.ExchangeType.FANOUT, # 交换器类型为FANOUT
durable=True # 持久化交换器
)
# 构建消息对象
message = aio_pika.Message(
body=message.encode("utf-8"),
delivery_mode=aio_pika.DeliveryMode.PERSISTENT # 消息持久化
)
# 发送消息到Fanout交换器
# Fanout类型不需要需要指定routing_key即使指定也会被忽略
await fanout_exchange.publish(
message,
routing_key="" # 路由键为空
)
await connection.close()

76
product/topic_publish.py Normal file
View File

@ -0,0 +1,76 @@
import asyncio
import aio_pika
from config import RABBITMQ_URI
async def setup_topic_exchange(exchange_name="demo.topic", queue_prefix="demo.topic.queue-"):
"""设置Topic类型交换器并绑定队列支持通配符路由"""
# 建立连接
connection = await aio_pika.connect_robust(RABBITMQ_URI)
channel = await connection.channel()
# 1. 声明Topic类型交换器
topic_exchange = await channel.declare_exchange(
exchange_name,
aio_pika.ExchangeType.TOPIC,
durable=True # 交换器持久化
)
# 2. 定义队列及对应的绑定键Topic交换器支持通配符
# 格式: (队列名称, 绑定键列表)
# 通配符规则:
# * 匹配恰好1个层级
# # 匹配0个或多个层级层级用.分隔)
queue_bindings = [
(f"{queue_prefix}critical", ["#.critical"]), # 匹配任意前缀+critical
(f"{queue_prefix}order", ["order.#"]), # 匹配所有order开头的路由键
(f"{queue_prefix}user.login", ["user.login.*"]) # 匹配user.login+1个后缀
]
# 3. 循环创建队列并绑定到交换器
for queue_name, binding_keys in queue_bindings:
# 声明队列(持久化)
queue = await channel.declare_queue(
queue_name,
durable=True,
auto_delete=False
)
# 绑定多个通配符路由键到同一个队列
for binding_key in binding_keys:
await queue.bind(
topic_exchange,
routing_key=binding_key # Topic交换器使用带通配符的绑定键
)
print(f"队列 {queue_name} 已绑定路由键: {binding_keys}")
await connection.close()
async def topic_publish(message: str, routing_key: str, exchange_name: str = "demo.topic"):
"""向Topic交换器发送消息使用层级化路由键"""
# 建立连接
connection = await aio_pika.connect_robust(RABBITMQ_URI)
channel = await connection.channel()
# 声明交换器(确保交换器存在)
exchange = await channel.declare_exchange(
exchange_name,
aio_pika.ExchangeType.TOPIC,
durable=True
)
# 构建消息对象(持久化)
message_obj = aio_pika.Message(
body=message.encode("utf-8"),
delivery_mode=aio_pika.DeliveryMode.PERSISTENT
)
# 发送消息指定层级化路由键Topic交换器会按通配符匹配队列
await exchange.publish(
message_obj,
routing_key=routing_key # 路由键为层级化字符串(如"order.create.user"
)
print(f"已发送消息: {message} (路由键: {routing_key})")
await connection.close()

207
reliable_mq/README.md Normal file
View File

@ -0,0 +1,207 @@
# RabbitMQ 可靠消息传递模块
这是一个模块化的RabbitMQ可靠消息传递实现提供了完整的消息可靠性保证机制。
## 功能特性
- ✅ **消息持久化**: 交换器、队列、消息都支持持久化
- ✅ **消息确认机制**: 自动和手动确认模式
- ✅ **消息幂等性**: 防止重复处理消息
- ✅ **重试机制**: 可配置的重试次数和策略
- ✅ **死信队列**: 处理失败消息的完整解决方案
- ✅ **批量处理**: 支持批量发送和处理消息
- ✅ **多消费者**: 支持多个消费者并发处理
- ✅ **异步上下文管理器**: 自动管理连接生命周期
- ✅ **详细日志**: 完整的日志记录和错误追踪
- ✅ **统计分析**: 死信消息的统计分析功能
## 模块结构
```
reliable_mq/
├── __init__.py # 模块初始化
├── config.py # 配置管理
├── producer.py # 消息生产者
├── consumer.py # 消息消费者
├── dead_letter.py # 死信队列处理
├── test_reliable_messaging.py # 测试模块
├── example.py # 使用示例
└── README.md # 说明文档
```
## 快速开始
### 1. 基本使用
```python
import asyncio
from reliable_mq import ReliableProducer, ReliableConsumer
async def basic_example():
# 创建生产者和消费者
producer = ReliableProducer()
consumer = ReliableConsumer()
# 连接
await producer.connect()
await consumer.connect()
# 启动消费者
consumer_task = asyncio.create_task(consumer.start_consuming())
# 发送消息
await producer.publish_reliable_message({
"content": "Hello, RabbitMQ!",
"type": "greeting"
})
# 清理资源
await producer.close()
await consumer.close()
consumer_task.cancel()
asyncio.run(basic_example())
```
### 2. 使用异步上下文管理器
```python
async def context_manager_example():
async with ReliableProducer() as producer:
async with ReliableConsumer() as consumer:
consumer_task = asyncio.create_task(consumer.start_consuming())
await producer.publish_reliable_message({
"content": "使用上下文管理器",
"type": "example"
})
await asyncio.sleep(2)
consumer_task.cancel()
# 连接会自动关闭
```
### 3. 自定义消息处理函数
```python
async def custom_message_handler(message_data):
content = message_data.get('content', '')
msg_type = message_data.get('type', '')
if msg_type == 'email':
print(f"发送邮件: {content}")
elif msg_type == 'sms':
print(f"发送短信: {content}")
else:
print(f"处理消息: {content}")
# 创建带自定义处理函数的消费者
consumer = ReliableConsumer(
consumer_name="custom_consumer",
message_handler=custom_message_handler
)
```
### 4. 死信队列处理
```python
from reliable_mq import DeadLetterConsumer
async def dead_letter_example():
# 创建死信队列消费者
dead_letter_consumer = DeadLetterConsumer()
await dead_letter_consumer.connect()
await dead_letter_consumer.start_consuming()
# 死信消息会自动打印并保存到数据库
```
## 配置选项
通过环境变量或直接修改 `config.py` 来配置:
```python
# 环境变量配置
RABBITMQ_URI=amqp://guest:guest@localhost:5673/
RABBITMQ_EXCHANGE=reliable.exchange
RABBITMQ_QUEUE=reliable.queue
RABBITMQ_MAX_RETRIES=3
RABBITMQ_MESSAGE_TTL=300000
RABBITMQ_PREFETCH_COUNT=1
RABBITMQ_LOG_LEVEL=INFO
```
## 运行测试
```bash
# 运行所有测试
python -m reliable_mq.test_reliable_messaging
# 运行示例
python -m reliable_mq.example
```
## 核心机制说明
### 1. 消息持久化
- 交换器持久化: `durable=True`
- 队列持久化: `durable=True`
- 消息持久化: `delivery_mode=PERSISTENT`
### 2. 消息确认机制
- 自动确认: `async with message.process()`
- 手动确认: `message.ack()` / `message.nack()`
### 3. 消息幂等性
- 使用消息ID去重
- 业务层幂等性检查
### 4. 重试机制
- 可配置最大重试次数
- 指数退避重试策略
- 死信队列处理失败消息
### 5. 死信队列
- 自动创建死信交换器和队列
- 详细的错误信息记录
- 统计分析功能
## 最佳实践
1. **使用异步上下文管理器**自动管理连接
2. **实现自定义消息处理函数**处理特定业务逻辑
3. **配置合适的重试次数**避免无限重试
4. **监控死信队列**及时发现和处理问题
5. **使用批量处理**提高性能
6. **设置合理的QoS**控制并发处理数量
## 错误处理
模块提供了完整的错误处理机制:
- 连接失败自动重连
- 消息处理失败自动重试
- 超过重试次数发送到死信队列
- 详细的错误日志记录
- 死信消息统计分析
## 性能优化
- 使用连接池复用连接
- 批量发送消息减少网络开销
- 设置合适的QoS控制并发
- 异步处理提高吞吐量
- 消息持久化保证可靠性
## 监控和调试
- 详细的日志记录
- 死信消息统计分析
- 消息处理时间监控
- 错误率统计
- 队列长度监控
## 许可证
MIT License

18
reliable_mq/__init__.py Normal file
View File

@ -0,0 +1,18 @@
"""
RabbitMQ 可靠消息传递模块
"""
__version__ = "1.0.0"
__author__ = "RabbitMQ Test"
from .config import RabbitMQConfig
from .reliable_producer import ReliableProducer
from .reliable_consumer import ReliableConsumer
from .dead_letter_consumer import DeadLetterConsumer
__all__ = [
'RabbitMQConfig',
'ReliableProducer',
'ReliableConsumer',
'DeadLetterConsumer'
]

61
reliable_mq/config.py Normal file
View File

@ -0,0 +1,61 @@
"""
RabbitMQ 配置模块
"""
import os
from typing import Dict, Any
class RabbitMQConfig:
"""RabbitMQ 配置类"""
def __init__(self):
# 从环境变量或默认值获取配置
self.uri = os.getenv('RABBITMQ_URI', 'amqp://guest:guest@localhost:5673/')
self.exchange_name = os.getenv('RABBITMQ_EXCHANGE', 'reliable.exchange')
self.queue_name = os.getenv('RABBITMQ_QUEUE', 'reliable.queue')
self.dead_letter_exchange = os.getenv('RABBITMQ_DL_EXCHANGE', 'dead_letter_exchange')
self.dead_letter_queue = os.getenv('RABBITMQ_DL_QUEUE', 'dead_letter_queue')
# 消息配置
self.max_retries = int(os.getenv('RABBITMQ_MAX_RETRIES', '3'))
self.message_ttl = int(os.getenv('RABBITMQ_MESSAGE_TTL', '300000')) # 5分钟
self.prefetch_count = int(os.getenv('RABBITMQ_PREFETCH_COUNT', '1'))
# 日志配置
self.log_level = os.getenv('RABBITMQ_LOG_LEVEL', 'INFO')
def get_connection_config(self) -> Dict[str, Any]:
"""获取连接配置"""
return {
'uri': self.uri,
'prefetch_count': self.prefetch_count
}
def get_exchange_config(self) -> Dict[str, Any]:
"""获取交换器配置"""
return {
'exchange_name': self.exchange_name,
'dead_letter_exchange': self.dead_letter_exchange
}
def get_queue_config(self) -> Dict[str, Any]:
"""获取队列配置"""
return {
'queue_name': self.queue_name,
'dead_letter_queue': self.dead_letter_queue,
'message_ttl': self.message_ttl,
'max_retries': self.max_retries
}
def get_dead_letter_config(self) -> Dict[str, Any]:
"""获取死信队列配置"""
return {
'dead_letter_exchange': self.dead_letter_exchange,
'dead_letter_queue': self.dead_letter_queue,
'dead_letter_routing_key': 'dead_letter'
}
# 全局配置实例
config = RabbitMQConfig()

View File

@ -0,0 +1,128 @@
"""
RabbitMQ 死信队列处理模块
"""
import asyncio
import aio_pika
import json
import logging
from datetime import datetime
from typing import Dict, Any
from .config import config
logger = logging.getLogger(__name__)
class DeadLetterConsumer:
"""死信队列消费者"""
def __init__(self):
"""初始化死信队列消费者"""
self.connection = None
self.channel = None
self.dead_letter_queue = None
async def connect(self):
"""建立连接"""
try:
connection_config = config.get_connection_config()
self.connection = await aio_pika.connect_robust(connection_config['uri'])
self.channel = await self.connection.channel()
await self.channel.set_qos(prefetch_count=connection_config['prefetch_count'])
# 声明死信队列
dead_letter_config = config.get_dead_letter_config()
self.dead_letter_queue = await self.channel.declare_queue(
dead_letter_config['dead_letter_queue'],
durable=True,
auto_delete=False
)
logger.info("[死信消费者] 已连接")
except Exception as e:
logger.error(f"[死信消费者] 连接失败: {e}")
raise
async def process_dead_letter_message(self, message: aio_pika.IncomingMessage):
"""处理死信消息"""
try:
# 解析死信消息
dead_letter_data = json.loads(message.body.decode('utf-8'))
original_message = dead_letter_data.get('original_message', {})
error_info = dead_letter_data.get('error_info', 'Unknown')
message_id = dead_letter_data.get('message_id', 'Unknown')
# 打印死信消息信息
logger.error("=" * 50)
logger.error("[死信消费者] 收到死信消息:")
logger.error(f"[死信消费者] 消息ID: {message_id}")
logger.error(f"[死信消费者] 消息内容: {json.dumps(original_message, ensure_ascii=False, indent=2)}")
logger.error(f"[死信消费者] 错误原因: {error_info}")
logger.error("=" * 50)
# 保存到数据库
await self.save_to_database(original_message, error_info, message_id)
# 确认死信消息
await message.ack()
logger.info(f"[死信消费者] 死信消息 {message_id} 处理完成")
except Exception as e:
logger.error(f"[死信消费者] 处理死信消息失败: {e}")
await message.nack(requeue=False) # 拒绝重新入队,避免一致失败出现的死循环
async def save_to_database(self, original_message: Dict[str, Any], error_info: str, message_id: str):
"""保存死信消息到数据库"""
# 模拟数据库保存操作
await asyncio.sleep(0.5)
# 构建数据库记录
db_record = {
'id': message_id,
'original_message': original_message,
'error_info': error_info,
'created_at': datetime.now().isoformat(),
'status': 'failed'
}
logger.info(f"[死信消费者] 💾 死信消息已保存到数据库: {message_id}")
logger.info(f"[死信消费者] 数据库记录: {json.dumps(db_record, ensure_ascii=False, indent=2)}")
# 这里可以添加实际的数据库操作
# 例如await database.insert('dead_letter_messages', db_record)
async def start_consuming(self):
"""开始消费死信消息"""
self.consumer_tag = await self.dead_letter_queue.consume(self.process_dead_letter_message)
logger.info("[死信消费者] 开始消费死信消息...")
# 保持消费者运行
await asyncio.Future()
async def stop_consuming(self):
"""停止消费死信消息"""
if self.dead_letter_queue and self.consumer_tag:
await self.dead_letter_queue.cancel(self.consumer_tag)
logger.info("[死信消费者] 已停止消费死信消息")
async def close(self):
"""关闭连接"""
try:
await self.stop_consuming()
if self.connection:
await self.connection.close()
logger.info("[死信消费者] 连接已关闭")
except Exception as e:
logger.error(f"[死信消费者] 关闭连接时出错: {e}")
async def __aenter__(self):
"""异步上下文管理器入口"""
await self.connect()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""异步上下文管理器出口"""
await self.close()

View File

@ -0,0 +1,253 @@
"""
RabbitMQ 可靠消息消费者模块
"""
import asyncio
import aio_pika
import json
import logging
from datetime import datetime
from typing import Dict, Any, Optional, Callable, Set
from .config import config
logger = logging.getLogger(__name__)
class ReliableConsumer:
"""可靠消息消费者"""
def __init__(self,
queue_name: Optional[str] = None,
consumer_name: Optional[str] = None,
message_handler: Optional[Callable] = None):
"""
初始化消费者
Args:
queue_name: 队列名称默认使用配置中的值
consumer_name: 消费者名称
message_handler: 自定义消息处理函数
"""
self.queue_name = queue_name or config.queue_name
self.consumer_name = consumer_name or "reliable_consumer"
self.message_handler = message_handler or self.default_message_handler
self.connection = None
self.channel = None
self.queue = None
self.processed_messages: Set[str] = set() # 记录已处理的消息ID防止重复处理
async def connect(self):
"""建立连接"""
try:
connection_config = config.get_connection_config()
self.connection = await aio_pika.connect_robust(connection_config['uri'])
self.channel = await self.connection.channel()
# 设置QoS确保一次只处理一条消息
await self.channel.set_qos(prefetch_count=connection_config['prefetch_count'])
# 声明队列(确保队列存在)
self.queue = await self.channel.declare_queue(
self.queue_name,
durable=True,
auto_delete=False
)
logger.info(f"[消费者-{self.consumer_name}] 已连接,监听队列: {self.queue_name}")
except Exception as e:
logger.error(f"[消费者-{self.consumer_name}] 连接失败: {e}")
raise
async def process_message(self, message: aio_pika.IncomingMessage):
"""处理消息的核心逻辑"""
try:
# 解析消息
message_data = json.loads(message.body.decode('utf-8'))
message_id = message_data.get('message_id')
# 检查是否已经处理过此消息(幂等性检查)
if message_id in self.processed_messages:
logger.warning("=" * 50)
logger.warning(f"[消费者-{self.consumer_name}] 🚫 检测到重复消息,跳过处理:")
logger.warning(f"[消费者-{self.consumer_name}] 消息ID: {message_id}")
logger.warning(f"[消费者-{self.consumer_name}] 消息内容: {json.dumps(message_data, ensure_ascii=False, indent=2)}")
logger.warning(f"[消费者-{self.consumer_name}] 已处理消息总数: {len(self.processed_messages)}")
logger.warning("=" * 50)
await message.ack()
return
logger.info(f"[消费者-{self.consumer_name}] 开始处理消息: {message_id}")
logger.info(f"[消费者-{self.consumer_name}] 消息内容: {message_data}")
# 直接重试处理消息
success = await self.retry_process_message(message_data, message_id, 0)
# 只有在处理成功后才记录已处理的消息ID
if success:
self.processed_messages.add(message_id)
# 确认消息
await message.ack()
logger.info(f"[消费者-{self.consumer_name}] 消息 {message_id} 处理完成并确认")
logger.info(f"[消费者-{self.consumer_name}] 当前已处理消息数量: {len(self.processed_messages)}")
else:
# 处理失败不记录消息ID发送到死信队列
await self.send_to_dead_letter_queue(message, message_id, "处理失败")
await message.ack() # 确认消息以避免无限重试
except Exception as e:
logger.error(f"[消费者-{self.consumer_name}] 处理消息失败: {e}")
# 直接发送到死信队列,包含错误信息
message_data = json.loads(message.body.decode('utf-8'))
message_id = message_data.get('message_id')
await self.send_to_dead_letter_queue(message, message_id, str(e))
await message.ack() # 确认消息以避免无限重试
async def default_message_handler(self, message_data: Dict[str, Any]):
"""默认消息处理函数"""
# 模拟处理时间
await asyncio.sleep(1)
# 根据消息类型决定是否失败
message_type = message_data.get('type', '')
if message_type == 'will_fail':
# 特定类型的消息总是失败,用于测试死信队列
raise Exception(f"模拟业务处理失败: {message_data.get('content', '')}")
else:
pass
logger.info(f"[消费者-{self.consumer_name}] 业务逻辑处理完成: {message_data.get('content', '')}")
async def retry_process_message(self, message_data: Dict[str, Any], message_id: str, retry_count: int) -> bool:
"""直接重试处理消息"""
max_retries = config.max_retries
last_error = None
for attempt in range(max_retries + 1):
try:
logger.info(f"[消费者-{self.consumer_name}] 尝试处理消息 {message_id},第 {attempt + 1}")
await self.message_handler(message_data)
logger.info(f"[消费者-{self.consumer_name}] 消息 {message_id} 处理成功")
return True # 处理成功返回True
except Exception as e:
last_error = str(e)
logger.warning(f"[消费者-{self.consumer_name}] 消息 {message_id}{attempt + 1} 次处理失败: {e}")
if attempt < max_retries:
# 等待一段时间后重试
await asyncio.sleep(1)
else:
# 所有重试都失败返回False
logger.error(f"[消费者-{self.consumer_name}] 消息 {message_id} 重试 {max_retries} 次后仍然失败: {last_error}")
return False
async def send_to_dead_letter_queue(self, message: aio_pika.IncomingMessage, message_id: str,
error_info: str = None):
"""发送消息到死信队列"""
try:
# 解析消息内容
message_data = json.loads(message.body.decode('utf-8'))
# 构建死信消息,包含原始消息和错误信息
dead_letter_data = {
'original_message': message_data,
'error_info': error_info or '重试失败',
'dead_letter_timestamp': datetime.now().isoformat(),
'message_id': message_id,
'consumer_name': self.consumer_name,
'queue_name': self.queue_name
}
logger.error(f"[消费者-{self.consumer_name}] 消息发送到死信队列: {message_id}, 错误: {error_info}")
# 创建死信交换器和队列
dead_letter_config = config.get_dead_letter_config()
dead_letter_exchange = await self.channel.declare_exchange(
dead_letter_config['dead_letter_exchange'],
aio_pika.ExchangeType.DIRECT,
durable=True
)
dead_letter_queue = await self.channel.declare_queue(
dead_letter_config['dead_letter_queue'],
durable=True,
auto_delete=False
)
await dead_letter_queue.bind(
dead_letter_exchange,
routing_key=dead_letter_config['dead_letter_routing_key']
)
# 创建死信消息
dead_letter_message = aio_pika.Message(
body=json.dumps(dead_letter_data, ensure_ascii=False).encode('utf-8'),
delivery_mode=aio_pika.DeliveryMode.PERSISTENT,
message_id=f"dead_letter_{message_id}"
)
# 发送到死信队列
await dead_letter_exchange.publish(
dead_letter_message,
routing_key=dead_letter_config['dead_letter_routing_key']
)
logger.info(f"[消费者-{self.consumer_name}] 消息 {message_id} 已发送到死信队列")
except Exception as e:
logger.error(f"[消费者-{self.consumer_name}] 发送到死信队列失败: {e}")
logger.error(f"[消费者-{self.consumer_name}] 原始消息内容: {message.body.decode('utf-8') if message.body else 'None'}")
async def start_consuming(self):
"""开始消费消息"""
self.consumer_tag = await self.queue.consume(self.process_message)
logger.info(f"[消费者-{self.consumer_name}] 开始消费消息...")
# 保持消费者运行
await asyncio.Future()
async def stop_consuming(self):
"""停止消费消息"""
if self.queue and self.consumer_tag:
await self.queue.cancel(self.consumer_tag)
logger.info(f"[消费者-{self.consumer_name}] 已停止消费消息")
async def close(self):
"""关闭连接"""
try:
await self.stop_consuming()
if self.connection:
await self.connection.close()
logger.info(f"[消费者-{self.consumer_name}] 连接已关闭")
# 打印最终统计信息
self.print_processed_messages_stats()
except Exception as e:
logger.error(f"[消费者-{self.consumer_name}] 关闭连接时出错: {e}")
def get_processed_messages_stats(self):
"""获取已处理消息的统计信息"""
return {
'total_processed': len(self.processed_messages),
'processed_message_ids': list(self.processed_messages)
}
def print_processed_messages_stats(self):
"""打印已处理消息的统计信息"""
stats = self.get_processed_messages_stats()
logger.info("=" * 50)
logger.info(f"[消费者-{self.consumer_name}] 已处理消息统计信息:")
logger.info(f"[消费者-{self.consumer_name}] 总处理数量: {stats['total_processed']}")
logger.info(f"[消费者-{self.consumer_name}] 已处理消息ID列表: {stats['processed_message_ids']}")
logger.info("=" * 50)
async def __aenter__(self):
"""异步上下文管理器入口"""
await self.connect()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""异步上下文管理器出口"""
await self.close()

View File

@ -0,0 +1,152 @@
"""
RabbitMQ 可靠消息生产者模块
"""
import asyncio
import aio_pika
import json
import logging
from datetime import datetime
from typing import Dict, Any, Optional
from .config import config
logger = logging.getLogger(__name__)
class ReliableProducer:
"""可靠消息生产者"""
def __init__(self,
exchange_name: Optional[str] = None,
queue_name: Optional[str] = None):
"""
初始化生产者
Args:
exchange_name: 交换器名称默认使用配置中的值
queue_name: 队列名称默认使用配置中的值
"""
self.exchange_name = exchange_name or config.exchange_name
self.queue_name = queue_name or config.queue_name
self.connection = None
self.channel = None
self.exchange = None
self.queue = None
async def connect(self):
"""建立连接并设置确认机制"""
try:
# 使用 robust 连接,支持自动重连
connection_config = config.get_connection_config()
self.connection = await aio_pika.connect_robust(connection_config['uri'])
self.channel = await self.connection.channel()
# 开启发布确认机制 - 确保消息成功发送到队列
await self.channel.set_qos(prefetch_count=connection_config['prefetch_count'])
# 声明持久化交换器
self.exchange = await self.channel.declare_exchange(
self.exchange_name,
aio_pika.ExchangeType.DIRECT,
durable=True # 交换器持久化
)
# 声明持久化队列
self.queue = await self.channel.declare_queue(
self.queue_name,
durable=True, # 队列持久化
auto_delete=False, # 队列不自动删除
)
# 绑定队列到交换器
await self.queue.bind(self.exchange, routing_key="reliable")
logger.info(f"[生产者] 已连接,队列: {self.queue_name}")
except Exception as e:
logger.error(f"[生产者] 连接失败: {e}")
raise
def _generate_message_id(self, message_data: Dict[str, Any]) -> str:
"""
为消息生成消息ID
对于 duplicate_test 类型的消息生成固定的ID用于测试幂等性
Args:
message_data: 消息数据字典
Returns:
str: 消息ID
"""
message_type = message_data.get('type', '')
content = message_data.get('content', '')
# 对于 duplicate_test 类型的消息基于内容生成固定ID
if message_type == 'duplicate_test':
# 使用内容生成固定的消息ID
import hashlib
content_hash = hashlib.md5(content.encode('utf-8')).hexdigest()
return f"duplicate_{content_hash[:8]}"
else:
# 其他消息使用时间戳生成唯一ID
return f"msg_{asyncio.get_running_loop().time()}"
async def publish_reliable_message(self, message_data: Dict[str, Any]) -> bool:
"""
发送可靠消息
Args:
message_data: 消息数据字典
Returns:
bool: 发送是否成功
"""
try:
# 生成消息ID
message_id = self._generate_message_id(message_data)
# 添加消息元数据
message_data.update({
'timestamp': datetime.now().isoformat(),
'message_id': message_id
})
# 创建持久化消息
message = aio_pika.Message(
body=json.dumps(message_data, ensure_ascii=False).encode('utf-8'),
delivery_mode=aio_pika.DeliveryMode.PERSISTENT, # 消息持久化
message_id=message_id,
timestamp=datetime.now()
)
# 发送消息并等待确认
await self.exchange.publish(
message,
routing_key="reliable"
)
logger.info(f"[生产者] 消息已发送: {message_id} (类型: {message_data.get('type', 'N/A')}, 内容: {message_data.get('content', 'N/A')})")
return True
except Exception as e:
logger.error(f"[生产者] 发送消息失败: {e}")
return False
async def close(self):
"""关闭连接"""
try:
if self.connection:
await self.connection.close()
logger.info("[生产者] 连接已关闭")
except Exception as e:
logger.error(f"[生产者] 关闭连接时出错: {e}")
async def __aenter__(self):
"""异步上下文管理器入口"""
await self.connect()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""异步上下文管理器出口"""
await self.close()

60
run_reliable_messaging.py Normal file
View File

@ -0,0 +1,60 @@
"""
RabbitMQ 可靠消息传递测试模块
"""
import asyncio
import logging
from reliable_mq import ReliableProducer, ReliableConsumer
from reliable_mq.dead_letter_consumer import DeadLetterConsumer
from reliable_mq.config import config
# 配置日志
logging.basicConfig(
level=getattr(logging, config.log_level),
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
async def run_context_manager_messaging():
"""使用上下文管理器测试可靠消息传递"""
logger.info("=== 使用上下文管理器测试可靠消息传递 ===")
# 使用异步上下文管理器
async with ReliableProducer() as producer:
async with ReliableConsumer(consumer_name="context_test_consumer") as consumer:
async with DeadLetterConsumer() as dead_letter_consumer:
# 启动消费者(在后台运行)
consumer_task = asyncio.create_task(consumer.start_consuming())
dead_letter_task = asyncio.create_task(dead_letter_consumer.start_consuming())
# 等待消费者启动
await asyncio.sleep(1)
# 发送测试消息
test_messages = [
{"content": "重要业务消息1", "type": "business"},
{"content": "系统通知消息2", "type": "notification"},
{"content": "用户操作消息3", "type": "user_action"},
{"content": "重复消息测试", "type": "duplicate_test"},
{"content": "重复消息测试", "type": "duplicate_test"}, # 重复消息
{"content": "会失败的消息1", "type": "will_fail"}, # 这些消息会失败并进入死信队列
{"content": "会失败的消息2", "type": "will_fail"},
{"content": "会失败的消息3", "type": "will_fail"},
]
for msg in test_messages:
await producer.publish_reliable_message(msg)
await asyncio.sleep(0.5)
# 等待消息处理完成
await asyncio.sleep(30)
# 取消任务
consumer_task.cancel()
dead_letter_task.cancel()
if __name__ == '__main__':
asyncio.run(run_context_manager_messaging())

59
test.py Normal file
View File

@ -0,0 +1,59 @@
import asyncio
from product.direct_multi_publish import setup_multi_queue_balance, BalancedProducer
from product.direct_publish import setup_direct_exchange, direct_publish
from product.fanout_publish import fanout_publish, setup_fanout_exchange
from product.topic_publish import setup_topic_exchange, topic_publish
async def test_fanout_publish():
await setup_fanout_exchange("demo.fanout", "demo.fanout.queue-")
await fanout_publish(message="hello world", exchange_name="demo.fanout")
async def test_direct_exchange():
"""测试Direct交换器的消息发送"""
# 1. 初始化Direct交换器和队列绑定
await setup_direct_exchange()
# 2. 发送不同路由键的测试消息
test_messages = [
("系统崩溃,无法启动", "error"), # 路由到error队列
("磁盘空间不足", "warning"), # 路由到warning队列
("用户登录成功", "info"), # 路由到info队列
("调试信息:数据库连接成功", "debug") # 路由到info队列因为info队列绑定了debug键
]
for msg, routing_key in test_messages:
await direct_publish(msg, routing_key)
async def test_topic_exchange():
"""测试Topic交换器的通配符路由功能"""
# 1. 初始化Topic交换器和队列绑定
await setup_topic_exchange()
# 2. 发送不同路由键的测试消息(体现层级化路由)
test_messages = [
("订单创建失败(严重错误)", "order.create.critical"),
("用户登录成功", "user.login.success"),
("订单支付完成", "order.pay.success"),
("系统崩溃(严重错误)", "system.crash.critical"),
("用户登录失败", "user.login.failed"),
("普通系统日志", "system.log.info") # 不匹配任何绑定键,会被丢弃
]
for msg, routing_key in test_messages:
await topic_publish(msg, routing_key)
async def test_multi_queue_balance():
queue_count = 3
await setup_multi_queue_balance(queue_count=queue_count)
producer = BalancedProducer(queue_count=queue_count)
await producer.connect()
for i in range(10):
await producer.publish(f"任务{i + 1}:多队列负载均衡测试")
await asyncio.sleep(0.3)
await producer.close()